
DAPT Documentation
Release 0.9.2

Ben Duggan

Mar 27, 2021

Contents:

1 Overview 3
1.1 Install . 3
1.2 Usage . 4
1.3 DAPT API Documentation . 4
1.4 Supported Online Services . 27
1.5 Examples . 31
1.6 Development Guide . 32

Python Module Index 35

Index 37

i

ii

DAPT Documentation, Release 0.9.2

A library to assist with running parameter sets across multiple systems. The goal of this library is to provide a tool set
and pipeline that make organizing, running and analyzing a large amount of parameter easier. Some of the highlights
include:

• Provide an easy way to run paramater sets.

• Protocol for allowing teams to run parameter sets concurrently.

• Use Google Sheets as a database to host and manage paramater sets.

• Access to the Box API which allows files to be uploaded to box.

Contents: 1

https://travis-ci.com/BenSDuggan/DAPT

DAPT Documentation, Release 0.9.2

2 Contents:

CHAPTER 1

Overview

When working on a project with or without access to high performance computing (HPC), there is often a need to
perform large parameter sweeps. Before developing DAPT, there were several problems the ECM team in Dr. Paul
Macklin’s research lab identified. First, it was difficult to manage a large number of parameter sets with a large
number of parameters. Second, it would be nice to use Google Sheets to run the parameters for easier collaboration
and management. Third, only one person in the group would be running all the parameters, making their computer
useless for the duration of the runs. Finally, we needed to upload the data to Box for permanent storage and to allow
the rest of the team to view the data.

DAPT was written to solve these problems. A “database” (CSV or Google Sheet) is used to store a list of parameter
sets. This database is managed by the Param class and provides methods to interact with and manage parameter sets.
the Box class allows data to be uploaded to Box.com. Sensitive API credentials can be stored in a config file (via the
Config class) which can also be accessed by users to get other variables.

Future versions of the project will work to improve documentation, add examples, cleanup current functionality and
add more features. While most of the dapt module is documented, the intended way of using each method is not
clearly explained. There are examples given for the main features, however, again there is not a satisfactory amount of
documentation. Some of the exciting new features to come will be notification and logging integration. For example,
we would like to add Slack notification so teams can be notified if there is an error with a test.

1.1 Install

The easiest way to install DAPT is using pip. To do so type:

pip install dapt

Alternatively, you can download a version the project. It is recommended to download a release of the project from
GitHub for improved stability. If you would like to download the most up to date version, then download the repo or
clone it on your machine git clone https://github.com/BenSDuggan/DAPT. Once downloaded nav-
igate to the root of the project (DAPT) and run pip install -r requirements.txt to install all of the
dependencies. If you use this method of installation, you will need to write all of your Python scripts using DAPT
in the root directory of the project. For these reasons, it’s recommended to only use this method if would like to
contribute to the project.

3

https://box.com
https://github.com/BenSDuggan/DAPT/releases
https://github.com/BenSDuggan/DAPT

DAPT Documentation, Release 0.9.2

You can then test to make sure everything installed by starting a python session and then running:

import dapt
dapt.__version__

You should see a version looking like 0.9.*.

DAPT is maintained for Python >= 3.6 and a full list of requirements is given in requirements.txt

You can now use the library! However, the functionality can be greatly increased by connecting some other services
such as Google Sheets or Box. Checkout the full list of Supported Online Services.

1.2 Usage

Once you have installed DAPT and have verified that it’s installed correctly you can start setting it up for actual
parameter runs. There are several ways to run DAPT but the basic philosophy is outlined below. You can also look at
specific examples. To use DAPT, start by importing it.

import dapt

DAPT can be run with or without a configuration file. The code is easier to use with a config file but it is not strictly
necessary. If you would like to create a config file, you should consult the Config class documentation. Assuming you
have created a config file called config.json, you can create a Config object.

config = dapt.Config(path='config.json')

Next, you need to pick a Database. A Database is a class that allows you get access a list of parameter sets. There are
currently two Databases: a Delimited file and Google sheets. Below shows how to create the database objects.

db = data.Delimited_file('csv_file.csv', delimiter=',') # Create a Delimited file DB
or
db = data.Sheet(config=config) # Create a Sheet DB with a config file
or
spreedsheet_id = 'xxxxxx' # Google Sheet spreedsheet id
creds = 'credentials.json' # Path to Google Sheets API credentials
db = data.Sheet(spreedsheet_id=spreedsheet_id, creds=creds) # Create a Sheet DB with
→˓a config file

Now you can create the Param object to start processing parameters. Create a Param object with the code below.

param = dapt.Param(db, config=config)

You can now use the methods in the Param class to get the next parameter set and manage the parameter set.

1.3 DAPT API Documentation

This is the DAPT reference guide that shows how the APIs work.

1.3.1 Config

The Config class allows user and API settings to be saved and updated using a configuration file. A config class is
not required by DAPT but using one provides several advantages. First, it makes initializing a class much easier as
each class can pull required attributes from a config. Second, API credentials can be stored in a config, allowing

4 Chapter 1. Overview

https://github.com/BenSDuggan/DAPT/blob/dev/requirements.txt
install.html
https://github.com/BenSDuggan/DAPT/tree/master/examples
https://dapt.readthedocs.io/en/latest/code/config.html
https://dapt.readthedocs.io/en/latest/code/database.html
https://dapt.readthedocs.io/en/latest/code/delimited_file.html
https://dapt.readthedocs.io/en/latest/code/sheet.html
https://dapt.readthedocs.io/en/latest/code/param.html

DAPT Documentation, Release 0.9.2

credentials to be kept in one place. Third, by allowing API tokens to be stored, there is no need to reauthenticate a
service (assuming the tokens are still valid). Finally, it provides a way for users to have their own settings file.

Configuration files use JSON (JavaScript Object Notation) format. A detailed understanding of JSON is not required,
but the basics should be understood. There are two main components of JSON files: key/value pairs (objects) and
arrays/lists. When using key/value pairs, the pairs must be surrounded by curly braces and seporated with commas.
Objects are seporated by colons (:) and keys must be sourounded by quotes. Values can be objects, arrays, strings,
numbers, booleans, or null. Bellow is a sample JSON file that could be used by DAPT.

Listing 1: Example of a simple JSON file.

{
"performed-by":"Ben",
"num-of-runs":-1,
"testing-variables":
{

"executable-path":"./main",
"output-path":"output/"

}
}

The performed-by and num-of-runs keys are reserved DAPT fields. These cause DAPT to add additional
information during tests, initiate classes automatically, and change the testing behavior. The list of reserved fields
and their behaviors are shown bellow. The testing-variables key has and object in it that might be used for a
specific testing parameters. They name of this key does not matter as long as it is not a reserved field. To see how the
Config class is used checkout the usage section or class documentation.

Fields

There are many key-value pairs which can be used in the configuration to make DAPT behave in a particular way.
These keys are called fields. These fields are reserved and should not be used in your config file unless you expect
DAPT to use them. A list of top level fields is provided below.

Fields Description
num-of-runs
(int)

The number of paramater sets to run.

performed-by
(str)

The username of the person that ran the parameter set.

last-test
(str)

The last test id that was run. If a test exits before completeing, it will be re-ran.

computer-strength
(int)

Only run tests on computers with sufficient power. The parameter set will only be run if this
value is greater than or equal that of the parameter sets computer-strength.

google-sheets
(str)

Values used by the Google Sheets storage API.

delimited-file
(str)

Values used by the Delimited file database class.

box (str) Values used by the Box storage API.
pretty-save
(bool)

Output the config in a ~pretty~ way. True by default.

Some of these fields are used by other DAPT classes to store values. For example, the google-sheets field has
many sub-fields that set parameters in the class automatically. The spreedsheet-id sub-field sets the spreedsheet
ID that should be used as the database. These sub-fields are not listed above. They are notable, however, because
you may accidentally find one of these sub-fields if you recursively search a config file. If you are worried about

1.3. DAPT API Documentation 5

http://www.json.org

DAPT Documentation, Release 0.9.2

accidentally using one of these fields, the FULL_CONFIG variable in the config module contains all of the config
fields.

Usage

For these examples, the example JSON shown above is used, stored in a file named example.json. To create a
Config object the path to the JSON file must be provided.

>>> config = dapt.Config(path="example.json")

The configuration should be accessed using the get_value() method. This method will returned the value of the
associated key. Keys can be provided as a string or a list where elements are the path to the value. The num-or-runs
attribute can be accessed as shown bellow.

>>> config.get_value("num-of-runs")
-1

If you wanted to find the value of output-path then you specify the path to it.

>>> config.get_value(["testing-variables", "output-path"])
'output/'

Alternatively, the output-path key can be accessed by using the recursive flag. This flag makes the
get_value() method recursively search the JSON tree for the first occupance of the specified key. This flag
will increase the look-up time and may not return the value you expect if multiple keys with that name are present.

The advantage of using the get_value() method is that None will be returned if the value is not found.

The configuration dictionary can be accessed indirectly by treating the Config object as a dictionary.

>>> config["num-of-runs"]
-1
>>> config["testing-variables"]["output-path"]
'output/'

Using this approach, the length of the dictionary can be accessed using Pythons internal len() function or any other
dict method. The keys of the dictionary can be accessed using the keys() method.

Before accessing a value in the config, it is good to check that it exists. This can be done using the has_value()
method. This method returns True if there is a non-none value in the config for the given key. The key and recursive
attributes behave the same as with the get_value() method. For example, to check that the output-path key
exists you could run the following and expect a return value of True.:

>>> config.has_value(["testing-variables", "output-path"])
True

If you checked for the key foo, then has_value() would return False.

To add key-value pairs to the configuration or update values, the update() method should be used. This method
will allow the configuration to change and save it to the JSON file. The configuration can be changed in four different
ways. First, by providing the key as a string. Second, by providing the key as an array representing a path to the value.
The third method uses a str for the string and recursively finds the first occurrence of the key in the config. Lastly,
the configuration can be updated by accessing the dictionary directly. Then update() can be ran without parameters
to save the config. The second and last methods are required to access nested key-value pairs. All of these methods
work to add new data or change values in the configuration.

6 Chapter 1. Overview

https://github.com/BenSDuggan/DAPT/blob/master/dapt/config.py

DAPT Documentation, Release 0.9.2

>>> config.update(key="performed-by", value="John", recursive=False)
{'performed-by': 'John', 'num-of-runs': -1,
'testing-variables': {'executable-path': './main', 'output-path': 'output/'}}

>>> config.update(key=["testing-variables", "executable-path"], value="main.exe",
recursive=False)

{'performed-by': 'John', 'num-of-runs': -1,
'testing-variables': {'executable-path': 'main.exe', 'output-path': 'output/'}}

>>> config.update(key="output-path", value="save/", recursive=True)
{'performed-by': 'John', 'num-of-runs': -1,
'testing-variables':{'executable-path': 'main.exe', 'output-path': 'save/'}}

>>> config["num-of-runs"] = 3
>>> config.update()
{'performed-by': 'John', 'num-of-runs': 3,
'testing-variables':{'executable-path': 'main.exe', 'output-path': 'save/'}}

When creating a new configuration file, the create() method can be used. This static method will create a default
configuration file at the path provided. This file contains all of the possible fields used by DAPT.

>>> dapt.config.Config.create(path="new-config.json")

Configuration files can contain sensitive API credentials or passwords. Storing these in plane text or publishing
configuration files online is unsecure as people can then gain access to your online services. To combate this you can
“safe” the configuration file. The safe() method will remove all API credentials from the configuration so the file
cannot be used to access your APIs. Currently, this this process is one-way and the credentials cannot be recovered.
However, in the future this will encrypt the file can be distributed online and unlocked by people with the correct
password.

class dapt.config.Config(path=’config.json’)
Bases: object

Class which loads and allows for editing of a config file.

Parameters path (string) – path to config file

static create(path=’config.json’)
Creates a config file with the reserved keys inserted. The DEFAULT_CONFIG will be used.

Parameters path (string) – path where config file will be written

Returns A Config object with the newly created default configuration

get_value(key, recursive=False, default=None)
Get the first value of the given key or return None if one doesn’t exist.

Parameters

• key (str or list) – the key (given as a string) or List containing the path to the value

• recursive (bool) – recursively look through the config for the given key. False by
default. If recursive is set to True then key must be a string.

• default (obj) – A default value to use if no value can be found. This is None by
default.

Returns The value associated to the given key or None if the key is not in the dictionary.

has_value(key, recursive=False)
Checks to see if the config contains the key and a value other than None.

Parameters

1.3. DAPT API Documentation 7

DAPT Documentation, Release 0.9.2

• key (str or list) – the key (given as a string) or List containing the path to the value

• recursive (bool) – recursively look through the config for the given key. False by
default. If recursive is set to True then key must be a string.

Returns True if the key has a value and it’s not None, False otherwise.

keys()
Get the keys from the configuration. This method only returns the keys at the top of the dictionary. It will
not return any nested keys.

Returns A list containing the keys in the dictionary.

read()
Reads the file with path set to self.path

Returns Dictionary of config file

static safe(path=’config.json’)
Safe config file by removing accessToken and refreshToken.

Parameters path (string) – path where config file will be writen

update(key=None, value=None, recursive=False)
Given a key and associated value, updated the config file. Alternatively, you can give no arguments and
the config dict will be saved. You can also do both.

Parameters

• key (str or list) – the key (given as a string) or List containing the path to the
value. If None is given then nothing will be updated in the dictionary.

• value (str) – the value associated ot the key.

• recursive (bool) – recursively look through the config for the given key. False by
default. If recursive is set to True then key must be a string.

Returns Dictionary of config file

1.3.2 Databases

Database Overview

Databases are the places where parameter spaces live. You must use a database in DAPT and the Param class requires
one to be provided. DAPT views databases similarly to a spreedsheet. Databases can be local or remote. If a database
is local (e.g. Delimited file), then only one person can run the parameters. When a remote database (e.g. Google
Sheets) is used, then multiple people can run the tests simultaneously.

The databases provided in DAPT are all built off of the Base Database. This ensures that databases can be interchanged
easily. For example, if you were using the Delimited file database, you could provide the Google Sheets to the Param
class instead. This works because all databases must support the same core functions within the Base Database class.
Some databases may have additional methods which work better with its design.

The only difference between these classes, from the user level, is the init and connect() methods. Database
classes can be initialized using only a Config class. This makes it easy to swap between and initialize databases.
Because some databases required users to login, you must connect to it before it can be accessed. This should be done
before trying to access the data.

8 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

Schematic

The database is made up of tables, identified by a key (str or int), which contain columns and rows. The tables
of database hold a parameter space and each row is a parameter set. A column contains particular fields (attributes)
within the space. The column names are called fields and should be strings. Rows are identified by an index, similar
to a list. The indexing starts from zero and increments.

Cell holds the value of a particular row and column. Currently, all cells are concidered strings, however, some
databases allow for other types to be inserted, or automatically inference the type. For this reason, you might need to
cast cells to different type.

Config

It is recommend to use a Config with the database classes. While all classes can be instantiated without a Config,
using one greatly increases useability and simplifies switching between databases. Each database has a reserved
Config key (listed below). The value will be a dictionary with API credentials and database settings. The the
structure of configuration is similar between databases, but specific to the API connection requirements. Specific
database classes have more information on required configuration contents.

Fields Description
delimited-file (str) Reserved word for Delimited_file database.
sheets (str) Reserved word for Sheets database.

Usage

Because the usage for each database is almost identical, it will be explained here instead of in the submodules. More
explications on the methods, checkout the Base Database. The connection steps for each database will be explained
within the respective documentation.

For this example, the Sample database will be used. By calling the sample_db() method, an example Delimited
file class is created.

>>> db = dapt.tools.sample_db(file_name='sample_db.csv', delimiter=',')

This method returns an instance of the database, but the line below shows how a new database instance can be created.

>>> db = dapt.db.Delimited_file(path='sample_db.csv', delimiter=',')

The Delimited file class doesn’t need to connect to anything, but most databases will so you should always run
connect().

>>> db.connect()
True

The table can simply be viewed by running:

>>> db.get_table()
[{'id': 't1', 'start-time': '2019-09-06 17:23', 'end-time': '2019-09-06 17:36',

'status': 'finished', 'a': '2', 'b': '4', 'c': '6'},
{'id': 't2', 'start-time': '', 'end-time': '', 'status': '', 'a': '10', 'b': '10', 'c
→˓': ''},
{'id': 't3', 'start-time': '', 'end-time': '', 'status': '', 'a': '10', 'b': '-10', 'c
→˓': ''}]

1.3. DAPT API Documentation 9

DAPT Documentation, Release 0.9.2

Tables are represented as an array of dictionaries. Each element is a parameter set. The keys in the dictionary are fields
and values are specific cells in the table. The fields of the table can be retrieved using the fields() method.

>>> db.fields()
['id', 'start-time', 'status', 'a', 'b', 'c']

A specific cell can be changed using the update_cell() method. This method requires the row index (starting
from 0), field, and updated value. For example, we can update field c with id “t2” to 20.

>>> db.update_cell(1, 'c', 20)
True

An entire row can be updated with the update_row() method. This method only requires the row index (starting
from 0) and the updated row (given as a dictionary).

>>> db.update_row(1, {'id':'t2', 'start-time':'2019-09-06 17:37',
'end-time':'2019-09-06 17:55', 'status':'finished', 'a':'10', 'b':'10', 'c':'20'})
[{'id':'t1', 'start-time':'2019-09-06 17:23', 'end-time':'2019-09-06 17:36',
'status':'finished', 'a':'2', 'b':'4', 'c':'6'},

{'id':'t2', 'start-time':'2019-09-06 17:37', 'end-time':'2019-09-06 17:55',
'status':'finished', 'a':'10', 'b':'10', 'c':'20'},

{'id':'t3', 'start-time':'', 'end-time':'', 'status':'', 'a':'10', 'b':'-10', 'c':
→˓''}]

Base Database

The Database class is the basic interface for adding parameter set hosting services. The idea is that the core methods
stay the same so that the inner workings can use multiple sources to access the parameter sets. These methods should
be overridden when making a class that inherits Database. You shouldn’t expect that any other method will be
called by the Parameter class, the main class that uses databases. It may be beneficial to add helper methods though
(e.g. get_worksheet() in Google Sheets).

Databases should give key-value pairs, where the keys are the “ids” of the table and the values are the values in that
given row. When getting the table, the result should be an array of dictionaries that contain the contents of the row.

class dapt.db.base.Database
Bases: object

An interface for accessing and setting parameter set data.

connect()
The method used to connect to the database and log the user in. Some databases won’t need to use the
connect method, but it should be called regardless to prevent problems.

Returns True if the database connected successfully and False otherwise.

connected()
Check to see if the API is connected to the server and working.

Returns True if the API is connected to the server and False otherwise.

fields()
Get the fields(attributes) of the parameter set

Returns Array of strings with each element being a field (order is preserved if possible)

get_keys()
Deprecated since version 0.9.3.

This method is being deprecated in favor of the fields method. It will be removed in version 0.9.5.

10 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

Get the keys of the parameter set

Returns Array of strings with each element being a key (order is preserved if possible)

get_table()
Get the table from the database.

Returns An array with each element being a dictionary of the key-value pairs for the row in the
database.

update_cell(row_id, field, value)
Update the cell specified by the row_id and field.

Parameters

• row_id (int) – the row id to replace

• field (str) – the field of the value to replace

• value (object) – the value to insert into the cell

Returns A boolean that is True if successfully inserted and False otherwise.

update_row(row_index, values)
Update the row at the row-index with the values given.

Parameters

• row_index (int) – the index of the row to replace

• values (Dict) – the key-value pairs that should be inserted

Returns A boolean that is True if successfully inserted and False otherwise.

Delimited file

This class uses a local delimited file (e.g. CSV, TSV) as a database for parameter testing. Delimited files represent a
table where the row is a line in the file, and each column is seporated by a delimiter. The delimiter is often a comma
(comma-seporated file) or a tab (tab-seporated file). A CSV file might look like this:

id,start-time,end-time,status,a,b,c
t1,2019-09-06 17:23,2019-09-06 17:36,finished,2,4,6
t2,,,,10,10,
t3,,,,10,-10,

and represent a table that looks like this:

id start-time end-time status a b c
t1 2019-09-06 17:23 2019-09-06 17:36 finished 2 4 6
t2 10 10
t3 10 -10

Because these files are stored on the users computer, there is no way for a team to work on the parameter set distribu-
tively (without manually dividing the parameter sets up).

Delimited files can have a header which gives the columns names. The header is the first row of the table. Headers
must be included with DAPT’s Delimited_file class.

DAPT provides a method named sample_db() which creates the sample CSV above. You can create this file by
running that method and then use the Delimited_file class with it.

1.3. DAPT API Documentation 11

https://en.wikipedia.org/wiki/Delimiter-separated_values

DAPT Documentation, Release 0.9.2

>>> db = dapt.tools.sample_db(file_name='sample_db.csv', delimiter=',')
>>> db.fields()
['id', 'start-time', 'end-time', 'status', 'a', 'b', 'c']

Config

Delimited file can accept a Config class. The values listed in the table below are the same attributes used to instantiate
the class. These values should be placed inside a JSON object named delimited-file.

Fields Description
path (str) The path, from the execution directory, to the delimited file.
delimiter (str) How the columns of the file are seporated.

The default configuration looks like this:

Listing 2: Sample JSON configuration for Delimited_file

{
"delimited-file" : {

"path" : "parameters.csv",
"delimiter" : ","

}
}

class dapt.db.delimited_file.Delimited_file(*args, **kwargs)
Bases: dapt.db.base.Database

An interface for accessing and setting paramater set data.

Keyword Arguments

• path (str) – path to delimited file file

• delimiter (str) – the delimiter of the CSV. , by default.

• config (Config object) – an Config instance

connect()
The method used to connect to the database and log the user in. Some databases won’t need to use the
connect method, but it should be called regardless to prevent problems.

Returns True if the database connected successfully and False otherwise.

connected()
Check to see if the API is connected to the server and working.

Returns True if the API is connected to the server and False otherwise.

fields()
Get the fields(attributes) of the parameter set

Returns Array of strings with each element being a field (order is preserved if possible) or None
if the file is empty.

get_row_index(column_key, row_value)
Get the row index given the column to look through and row value to match to.

Parameters

12 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

• column_key (str) – the column to use.

• row_value (str) – the row value to match with in the file and determin the row index.

Returns The index or -1 if it could not be determined

get_table()
Get the table from the database.

Returns An array with each element being a dictionary of the key-value pairs for the row in the
database.

update_cell(row_index, field, value)
Update the cell specified by the row_id and field.

Parameters

• row_id (int) – the row id to replace

• field (str) – the field of the value to replace

• value (object) – the value to insert into the cell

Returns A boolean that is True if successfully inserted and False otherwise.

update_row(row_index, values)
Update the row at the row-index with the values given.

Parameters

• row_index (int) – the index of the row to replace

• values (Dict) – the key-value pairs that should be inserted

Returns A boolean that is True if successfully inserted and False otherwise.

Google Sheets

Class which allows for Google Sheets to be used as paramater set database.

Note: If you have data in the first row, you must have entries in some other row.

Authentication

TODO

Config

The Google Sheets class can be instantiated using a Config class. There are several options in the config which are
redundant (e.g. worksheet-id and worksheet-title). They are marked with flags in the table below. These values should
be placed inside a JSON object named google or google-sheets. If the keys are placed inside the google key,
the values will be shared with other Google APIs (e.g. Google Drive).

1.3. DAPT API Documentation 13

DAPT Documentation, Release 0.9.2

Fields Description
spreedsheet-id (str) The Google spreedsheet ID being used. Found in the URL.
*creds-path (str) Path to the Google Sheets credentials JSON file.
*creds (dict) The Google credentials provided from the developer console.
#worksheet-id (int) The Google Sheets worksheet id. Sheets are indexed at 0.
#worksheet-title (str) The Google Sheets worksheet title.

* fields should not be used together. If you use them together, creds will be used over creds-path. # fields
should also not be used together and worksheet-id will be used.

The default configuration looks like this:

Listing 3: Sample JSON configuration for Sheets

{
"google-sheets" : {

"spreedsheet-id" : "",
"creds-path" : "",
"creds" : {},
"worksheet-id" : "",
"worksheet-title" : ""

}
}

class dapt.db.sheets.Sheet(*args, **kwargs)
Bases: dapt.db.base.Database

An interface for accessing and setting paramater set data. You must either provide a Config object or client_id
and client_secret.

Keyword Arguments

• config (Config) – A Config object which contains the client_id and client_secret.

• spreedsheet_id (str) – the Google Sheets ID creds (str): the path to the file containing
the Google API credentials. Default is credentials.json.

• sheet_id (int) – the the sheet id to use. 0 is used if no value is givin for sheet_title,
sheet_id or in the Config

• sheet_title (str) – the title of the sheet to use

connect()
The method used to connect to the database and log the user in. Some databases won’t need to use the
connect method, but it should be called regardless to prevent problems.

Returns gspread client if the database connected successfully and False otherwise.

connected()
Check to see if the API is connected to the server and working.

Returns True if the API is connected to the server and False otherwise.

fields()
Get the fields(attributes) of the parameter set

Returns Array of strings with each element being a field (order is preserved if possible)

get_key_index(column_key)
Get the column index given the key.

14 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

Parameters column_key (str) – the key to find the index of

Returns The index or -1 if it could not be determined.

get_row_index(column_key, row_value)
Get the row index given the column to look through and row value to match to.

Parameters

• column_key (str) – the key to find the index of

• row_value (str) – the value of the cell to fine

Returns The index or -1 if it could not be determined.

get_table()
Get the table from the database.

Returns An array with each element being a dictionary of the key-value pairs for the row in the
database.

update_cell(row_id, field, value)
Update the cell specified by the row_id and field.

Parameters

• row_id (int) – the row id to replace

• field (str) – the field of the value to replace

• value (object) – the value to insert into the cell

Returns A boolean that is True if successfully inserted and False otherwise.

update_row(row_index, values)
Get the row of the paramater set.

Parameters

• row_index (int) – the index of the row to replace (starting from 1). Indices less than
1 will return False. Indices greater than the table length will be appended.

• values (Dict) – the key-value pairs that should be inserted. If the dictionary contains
more values then number of columns, the table will be extended.

Returns A boolean that is Trues if successfully inserted and False otherwise.

worksheet(*args, **kwargs)
Get a Google Sheet object. The worksheet id or title are obtained from the Config file or initialization.

Returns A Google Sheet worksheet

1.3.3 Parameter

The parameter module contans the Param class that interact with the database to get and manage the parameter spaces.
This is the main module that you should interact with.

Database

In order to get the paramaters, the Param class needs to be given a Database instance (e.g. Google Sheets, Delimited
file). The database is where the parameters to be tested live. The database has a couple required fields (attributes) and
many optional fields. The Fields section provides more information on how the database should be configured.

1.3. DAPT API Documentation 15

DAPT Documentation, Release 0.9.2

Each time a new parameter set is requested, the database will be downloaded again. This means that the database can
be changed as DAPT is running to add or remove the number of tests. k An important note regarding database is that
they can be ran local or on the internet. This means that multiple people can work on the parameter set at the same
time, thus distributing the computational work load.

Fields

A field is the key (or identifier) used to get the value when a parameter set is returned. Each database is required to
have and id and status field. There are many optional fields which can be used to give additionally information
about the run such as start time and who performed the run. Below are the fields that are used with parsing parameter
sets. Required parameters are marked with an astrict(*).

Fields Description
id * (str) Unique parameter set installed
status * (str) The current status of the parameter set. Blank values(default) have not been ran, successful

have finished and failed have failed.
start-time
(str)

The time that the parameter set began. Times are in UTC time format.

end-time
(str)

The time that the parameter set finished. Times are in UTC time format.

performed-by
(str)

The username of the person that ran the parameter set.

comments
(str)

Any comments such as error messages relating to the parameter set.

computer-strength
(int)

The minimum strength that the computer running the test should have. The
computer-strength in the Config must be greather than or equal to this value for the
test to be ran

The id field is a unique identifier for that test. This attribute is used to identify the parameter set and must be given to
most of the methods in the Param class. The status field gives the current status of the test.

There are five main status values: empty, “successful”, “failed”, “in progress”, and other text. When a test has an
empty status it indicates that the test has not been ran yet. A status of “successful” indicates that the test has finished
successfully, and a “failed” status shows that the test failed.

When you request another parameter set by running next_parameters(), the status will automatically be set to
“in progress”. If the status is not empty, then DAPT will not offer it when the next_parameters() method is
called. You can update the status to something you want by calling the update_status() method.

Config

The Config fields will only be used if they are included in the Config. If the fields are excluded, then the the fields
will not be added.

16 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

Fields Description
num-of-runs
(int)

The number of paramater sets to run.

performed-by
(str)

The name of the person that ran the parameter set.

last-test
(str)

The last test id that was run. If a test exits before completeing, it will be re-ran.

computer-strength
(int)

Only run tests on computers with sufficient power. The parameter set will only be run if this
value is greater than or equal that of the parameter sets computer-strength.

Usage

To initiate the Param class, you must provide a database object. The database used in this example is the dapt.
tools.sample_db(). A config object can additionally be provided to enable advanced control.

>>> param = dapt.Param(db, config=conf)

The param object is used to interact with parameter sets in the parameter space. To get the next parameter set, you
use the next_parameters() method. This will return a JSON object containing the parameter set.

>>> p = param.next_parameters()
>>> p
{'id': 't2', 'start-time': '2020-12-27 17:21:00', 'end-time': '', 'status': 'in
→˓progress',
'a': '10', 'b': '10', 'c': ''}

The status of the parameter set will automatically be set to “in progress”. To change the status, you can use the
update_status() method. This method requires the id of the parameter set and the new status to be provided.
In this case, the id is “t2”.

>>> p = param.update_status(p['id'], 'adding')
>>> p
{'id': 't2', 'start-time': '2020-12-28 21:11:10', 'end-time': '', 'status': 'adding',
'a': '10', 'b': '10', 'c': ''}

The status can be updated as many times as you’d like. Once you have finished running the test, you can mark it as
successful or failed using the respective method. These methods require the id of the parameter set to be specified.

>>> param.successful(p['id'])
{'id': 't2', 'start-time': '2020-12-28 21:11:10', 'end-time': '2020-12-28 21:24:50',
'status': 'successful', 'a': '10', 'b': '10', 'c': ''}

If you mark the test as failed, the reason can optionally be provied.

class dapt.param.Param(database, config=None)
Bases: object

Create a Param instance with a database and optional config file.

Parameters

• database (Database) – a Database instance (such as Google Sheets, Delimited file)

• config (Config) – a config object which allows for more features. This is optional.

failed(id, err=”)
Mark a parameter set as failed to completed.

1.3. DAPT API Documentation 17

DAPT Documentation, Release 0.9.2

Parameters

• id (str) – the id of the parameter set to use

• err (str) – the error message. Empty by default.

Returns The new parameter set that has been updated or False if not able to update.

next_parameters()
Get the next parameter set if one exists

Returns An OrderedDict containing the key-value pairs from that parameter set or None if there
are no more to sets.

successful(id)
Mark a parameter set as successfully completed.

Parameters id (str) – the id of the parameter set to use

Returns The new parameter set that has been updated or False if not able to update.

update_status(id, status)
Update the status of the selected parameter. If status is not included in the parameter set keys then nothing
will be updated.

Parameters id (str) – the id of the parameter set to use

Returns The new parameter set that has been updated or False if not able to update.

1.3.4 Storage

Storage Overview

This module contans classes and functions that assist with the storage APIs. It includes the Storage class and
methods to deal with overwriting files/folders.

Because the APIs of services are all different, DAPT calls the resource identification a file_id. Even if the resource
is not a file, it is called a file_id. This is similar to everything is a file in Linux.

To attempt to make paths easier to navigate, the download and upload methods include a folder and name attribute.
So if you wanted to upload a file in foo/bar/file.py, you would set folder to foo/bar and name to file.
py. You can omit the folder attribute and the current directory will be used. The motivation for this is to 1) make
the file name and save location explicit, and 2) standardize these variables accross the download and upload functions.
When downloading a resource, you may want to keep the file name from the service, or rename it. By setting the
name attribute to None, the name of the resource will be used.

Storage base

The Storage class is designed to provide a standard interface for adding APIs that enable storage. This class defines the
basic required functions that must be implimented for two classes inheriting this class to work in the same workflow,
assuming the correct API keys are used. Switching storage objects should work seemlessly, if a Config object is used
to initialize the Storage object. If the API credentials are folderectly provided, this cannot be guarantied because
different services had different methods of initialization.

Different APIs might have different methods for identifying files. For example, Box uses IDs for files and folders, but
another service might use a path from the root directory. The method of identifying files or folders is called a fid
(file/folder identification) in DAPT. Different implimentations might use different protocols for files and folders, so
the Storage methods should take care of this.

18 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

Required methods

There are four required methods that all Storage objects must implement. The required methods are download, delete,
rename, and upload. These methods are based off REST APIs, although the underlying implimentation do not need to
use REST.

class dapt.storage.base.Storage
Bases: object

connect()
The method used to connect to the database and log the user in. Some databases won’t need to use the
connect method, but it should be called regardless to prevent problems.

Returns True if the database connected successfully and False otherwise.

connected()
Check to see if the API is connected to the server and working.

Returns True if the API is connected to the server and False otherwise.

delete_file(file_id)
Delete the the given file.

Parameters file_id (str) – The file identification to be downloaded

Returns True if successful and False otherwise

delete_folder(file_id)
Delete the given folder.

Parameters file_id (str) – The folder identification to be downloaded

Returns True if successful and False otherwise

download_file(file_id, folder=’.’, name=None, overwrite=True)
Download the file at the given file_id to the given path.

Parameters

• file_id (str) – The file identification to be downloaded

• folder (str) – The directory where the file should be saved

• name (str) – The name that the file should be saved as. If None is given (default), then
the name of the file on the resource will be used.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if successful and False otherwise

download_folder(file_id, folder=’.’, name=None, overwrite=True)
Download the folder at the given file_id to the given path.

Parameters

• file_id (str) – The folder identification to be downloaded

• folder (str) – The directory where the file should be saved

• name (str) – The name that the file should be saved as. If None is given (default), then
the name of the file on the resource will be used.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if successful and False otherwise

1.3. DAPT API Documentation 19

DAPT Documentation, Release 0.9.2

rename_file(file_id, name)
Rename the given file.

Parameters

• file_id (str) – The file identification to be downloaded

• name (str) – The new name of the file or folder

Returns True if the file or folder was renamed, False otherwise.

rename_folder(file_id, name)
Rename the given folder.

Parameters

• file_id (str) – The folder identification to be downloaded

• name (str) – The new name of the file or folder

Returns True if the file or folder was renamed, False otherwise.

upload_file(file_id, name, folder=’.’, overwrite=True)
Upload a file to the given folder.

Parameters

• file_id (str) – The folder where the file should be saved.

• name (str) – The name that the file should be uploaded.

• folder (str) – The directory where the file is stored.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if the upload was successful and False otherwise.

upload_folder(file_id, name, folder=’.’, overwrite=True)
Upload a folder to the given folder.

Parameters

• file_id (str) – The folder where the folder should be saved.

• name (str) – The name that the file should be uploaded.

• folder (str) – The directory where the file is stored.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if the upload was successful and False otherwise.

dapt.storage.base.check_overwrite_file(folder, name, overwrite, remove_existing)
This method checks to see if the file at the path specified should be overwritten.

Parameters

• folder (str) – The directory where the file might be.

• name (str) – The name of the file

• overwrite (bool) – Should the file be overwritten

• remove_existing – (bool): Should the file be deleted if it already exists

Returns True if the file should be overwritten and False otherwise.

dapt.storage.base.check_overwrite_folder(folder, name, overwrite, make_folder)
This method checks to see if the file at the path specified should be overwritten.

20 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

Parameters

• folder (str) – The directory where the file might be.

• name (str) – The name of the folder

• overwrite (bool) – Should the file be overwritten

• make_folder (bool) – Should the directory be made if it passes the overwrite test.

Returns True if the folder can be overwritten and was created (if make_folder was True) and
False otherwise.

dapt.storage.base.get_mime_type(name)
Get the MIME type of the given file based on it’s file extension.

Parameters name (str) – the name of the file including the extension

Returns The MIME type of the file and None if the MIME type cannot be found.

Box

Class that allows for access to the box API and methods to directly upload files. If you wish to use the Box API you
should view the install.

Authentication

In order for the Box API to work, it needs to get a user specific access and refresh token. Box provides access tokens
to users which are a session key. They remain active for one hour at which time they must be refreshed using the
refresh token. Once a new access and refresh token has been given, the old one will no longer work.

The tokens can be provided in three ways. First, you can run Box(...).connect() which will start a flask
webserver. You can then proceed to 127.0.0.1:5000 and log in with your Box username and password. This is
done securely through Box and you username and password cannot be extracted. Second, you can insert the ac-
cess and refresh token in the config file. Then the Box class will use these tokens. The final way to provide
the tokens is by directly passign them to Box(...).connect(access_token=<your access token>,
refresh_token=<your refresh token>).

On a server, where you have no access to a web browser, you will need to get the tokens using a computer which has
a web browser. You can then place those tokens in the config file or directly pass them to the connect() method.

Config

The best way to use Box is with a configuration file. Box attributes can be added to the config file as a JSON object
which is the value for the key box. An sample config file for box is shown bellow.

{
"box" : {

"client_id" : "xxx",
"client_secret" : "xxx",
"access_token" : "xxx",
"refresh_token" : "xxx",
"refresh_time" : "xxx"

}
}

1.3. DAPT API Documentation 21

/install/box-install.html
127.0.0.1:5000

DAPT Documentation, Release 0.9.2

class dapt.storage.box.Box(*args, **kwargs)
Bases: dapt.storage.base.Storage

Class which allows for connection to box API. You must either provide a Config object or client_id and
client_secret.

Keyword Arguments

• config (Config) – A Config object which contains the client_id and client_secret.

• client_id (str) – The Box client ID.

• client_secret (str) – The Box client secret.

connect(access_token=None, refresh_token=None)
Tries to connect to box using arguments provided in Config and starts server for authorization if not.

Parameters

• access_token (str) – Optional argument that allows DAPT to connect to box without
going through web authentication (assuming refresh_token is given and not expired).

• refresh_token (str) – Optional argument that allows DAPT to connect to box with-
out going through web authentication (assuming access_token is given and not expired).

Returns Box client if successful

delete_file(file_id)
Delete the the given file.

Parameters file_id (str) – The file identification to be downloaded

Returns True if successful and False otherwise

delete_folder(folder_id)
Delete the given folder.

Parameters folder_id (str) – The folder identification to be downloaded

Returns True if successful and False otherwise

download_file(file_id, path=’.’, overwrite=True)
Download the file at the given file_id to the given path.

Parameters

• file_id (str) – The file identification to be downloaded

• path (str) – The path where the file should be saved

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if successful and False otherwise

download_folder(folder_id, path=’.’, overwrite=True)
Download the folder at the given file_id to the given path.

Parameters

• folder_id (str) – The folder identification to be downloaded

• path (str) – The path where the file should be saved

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if successful and False otherwise

22 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

rename_file(file_id, name)
Rename the given file.

Parameters

• file_id (str) – The file identification to be downloaded

• name (str) – The new name of the file or folder

Returns True if the file or folder was renamed, False otherwise.

rename_folder(folder_id, name)
Rename the given folder.

Parameters

• folder_id (str) – The folder identification to be downloaded

• name (str) – The new name of the file or folder

Returns True if the file or folder was renamed, False otherwise.

update_tokens(access_token)
Refresh the access and refresh token given a valid access token

Parameters access_token (string) – box access token to be refreshed

Returns Box client

upload_file(folder_id, path, name=None, overwrite=True)
Upload a file to the given folder.

Parameters

• folder_id (str) – The folder identification to be downloaded

• path (str) – The path to the file or folder to be uploaded

• name (str) – The name the file or folder should be saved with. If None then the leaf of
the path is used as the name.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if the upload was successful and False otherwise.

upload_folder(folder_id, path, name=None, overwrite=True)
Upload a folder to the given folder.

Parameters

• folder_id (str) – The folder identification to be downloaded

• path (str) – The path to the file or folder to be uploaded

• name (str) – The name the file or folder should be saved with. If None then the leaf of
the path is used as the name.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if the upload was successful and False otherwise.

Google Drive

Authentication

1.3. DAPT API Documentation 23

DAPT Documentation, Release 0.9.2

Config

Usage

class dapt.storage.google_drive.Google_Drive(**kwargs)
Bases: dapt.storage.base.Storage

Download, upload, move, and delete files or folders from Google Drive.

Keyword Arguments

• creds_path (str) – the path to the file containing the Google API credentials. Default
is credentials.json.

• config (Config) – a Config object with the associated config file to be used

connect()
Allows you to sign into your Google account through the internet browser. This should automatically open
the browser up.

Returns True if the connection was successful and False otherwise.

create_folder(file_id, name)
Create a folder named name in the folder with the file_id given.

Parameters

• file_id (str) – The file id of the parent folder to create the new folder in

• name (str) – What the name of the new folder should be

Returns The file metedata if successful and None otherwise.

delete_file(file_id)
Delete the the given file.

Parameters file_id (str) – The file identification to be downloaded

Returns True if successful and False otherwise

delete_folder(file_id)
Delete the given folder.

Parameters file_id (str) – The folder identification to be downloaded

Returns True if successful and False otherwise

download_file(file_id, folder=’.’, name=None, overwrite=True)
Download the file at the given file_id to the given path. This will only download binary files such as
Microsoft Docs, PDFs, PNGs, MP4, etc. This method is not capable of downloading Google products
such as Google Docs and Google Sheets.

Parameters

• ile_id (str) – The file identification to be downloaded

• folder (str) – The directory where the file should be saved

• name (str) – The name that the file should be saved as. If None is given (default), then
the name of the file on the resource will be used.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if successful and False otherwise

24 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

download_folder(file_id, folder=’.’, name=None, overwrite=True)
Download the folder at the given file_id to the given path.

Parameters

• ile_id (str) – The file identification to be downloaded

• folder (str) – The directory where the file should be saved

• name (str) – The name that the file should be saved as. If None is given (default), then
the name of the file on the resource will be used.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if successful and False otherwise

rename_file(file_id, name)
Rename the given file.

Parameters

• file_id (str) – The file identification to be downloaded

• name (str) – The new name of the file or folder

Returns True if the file or folder was renamed, False otherwise.

rename_folder(file_id, name)
Rename the given folder.

Parameters

• file_id (str) – The folder identification to be downloaded

• name (str) – The new name of the file or folder

Returns True if the file or folder was renamed, False otherwise.

upload_file(file_id, name, folder=’.’, overwrite=True)
Upload a file to the given folder.

Parameters

• file_id (str) – The folder where the file should be saved.

• name (str) – The name that the file should be uploaded.

• folder (str) – The directory where the file is stored.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if the upload was successful and False otherwise.

upload_folder(file_id, name, folder=’.’, overwrite=True)
Upload a folder to the given folder.

Parameters

• file_id (str) – The folder where the folder should be saved.

• name (str) – The name that the file should be uploaded.

• folder (str) – The directory where the folder is stored.

• overwrite (bool) – Should the data on your machine be overwritten. True by default.

Returns True if the upload was successful and False otherwise.

1.3. DAPT API Documentation 25

DAPT Documentation, Release 0.9.2

1.3.5 Tools

A collection of tools that make DAPT easy to use, especially with PhysiCell. The sample_db and
create_settings_file() methods are helpful with anyone using DAPT. The rest of the methods are used
specifically for PhysiCell pipelines.

dapt.tools.create_XML(parameters, default_settings=’PhysiCell_settings_default.xml’,
save_settings=’PhysiCell_settings.xml’, off_limits=[])

Create a PhysiCell XML settings file given a dictionary of paramaters. This function works by having a
default_settings file which contains the generic XML structure. Each key in parameters` then
contains the paths to each XML tag in the ``default_settings file. The value of
that tag is then set to the value in the associated key. If a key in parameters does not exist in the
default_settings XML file then it is ignored. If a key in parameters also exists in off_limits
then it is ignored.

Parameters

• paramaters (dict) – A dictionary of paramaters where the key is the path to the xml
variable and the value is the desired value in the XML file.

• default_settings (str) – the path to the default xml file

• save_settings (str) – the path to the output xml file

• off_limits (list) – a list of keys that should not be inserted into the XML file.

dapt.tools.create_settings_file(parameters, pid=None)
Creates a file where each line contains a key from the parameters and its associated key, separated by a semi-
colon.

Parameters

• parameters (dict) – the paramaters to be saved in the file

• pid (str) – the parameter id of the current parameter run. If you don’t give an id then the
id in parameters will be used.

dapt.tools.create_zip(pid)
Zip all of the important PhysiCell items.

Parameters pid (str) – the id of the current parameter run

Returns The name of the zipped file

dapt.tools.data_cleanup(config=None)
Emulating make data-cleanup-light: remove .mat, .xml, .svg, .txt, .pov. You can optionally remove zipped files
by setting remove-zip equal to True or remove *.mp4 by setting remove-movie to True in the config
file.

Parameters config (Config) – A config object, optionally given.

dapt.tools.sample_db(file_name=’sample_db.csv’, delimiter=’, ’)
Create a sample Delimited_file database. The sample table is shown below. This method will create a file

specified in the file_name attribute using the delimiter specified by delimiter.

id start-time end-time status a b c
t1 2019-09-06 17:23 2019-09-06 17:36 finished 2 4 6
t2 10 10
t3 10 -10

Parameters

26 Chapter 1. Overview

http://physicell.org/

DAPT Documentation, Release 0.9.2

• file_name (str) – the file name of the file to create and use for the database. The default
value is sample_db.csv.

• delimiter (str) – the delimiter to use for the file. The default is a ,.

Returns A Delimited_file object using the file_name specified.

1.4 Supported Online Services

1.4.1 Google Sheets Installation

Google Sheets can be used as a database to store your parameter sets. The advantage to using this “database” over a
file containing the parameters is that a team can work on the set more collaboratively and update the parameter list
on the fly. The bigger advantage is that the parameter list can be run dynamically. Meaning that people, running the
library simultaneously, can connect to Google Sheets and get the next parameter set in the list.

Get API Credentials

To use Google Sheets you will need to use the Google Sheets API and generate the proper credentials.

1. Start by going to the Google Developer Console and login using a Google account.

2. Create a new project by selecting the button labeled “CREATE PROJECT”. If you have already created a project
or do not see the button, selecting the down arrow next in the top left corner of the page next to the “Google
API” logo and clicking “New Project”.

3. Give the project a name and press “CREATE”.

1.4. Supported Online Services 27

https://console.developers.google.com

DAPT Documentation, Release 0.9.2

4. Click “ENABLE APIS AND SERVICES”, search for “Google Sheets API” and click it. Then click “Enable”.

5. Click the “Credentials” tab from the menu on the left side of the page. Click the dropdown at the top of the page
that says “CREATE CREDENTIALS” and select “Service account”.

28 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

6. Give the service a name and click “Create”.

7. In the next section asking about service account permissions, create a role with by selecting “Project” then
“Editor”. Then select “Continue”.

1.4. Supported Online Services 29

DAPT Documentation, Release 0.9.2

8. On step three of creating the credentials, click “DONE”.

9. You should now be on the credentials page of the Google Sheets API. Under Service Account you should see an
entry with the name of the account you just created. Record the email address given there. You will need to share
the Google Sheet acting as a database with it. The email address should end in .iam.gserviceaccount.
com.

10. To get the credentials needed by DAPT click on the pen on the right side of the Service Account.

11. Under the “Keys” section, select “ADD KEY”, then “Create new key”. Ensure the key type of “JSON” is
selected and click “CREATE”. A JSON file should then start downloading to your computer. You will give

30 Chapter 1. Overview

DAPT Documentation, Release 0.9.2

DAPT the path to this JSON file when using Google Sheets. Then click “DONE”.

1.4.2 Box Installation

Box is a cloud storage service that many universities allow students, facutie and staff to use. The advantage of box is
that it allows a large amount of data to be uploaded to a common place where team memebers can observe data. In
order to allow DAPT to upload to box, you must create some API credentials.

API Credentials

1. Start by going to the Box Development website and clicking on the blue “Console” button. Then log in.

2. Click “Create New App”. Then click “Custom App” and “Next” on the next page.

3. On the “Authentication Method” page click “Standard OAuth 2.0 (User Authentication)” and name your project.
Then click “View Your App”.

4. Scroll down to the “OAuth 2.0 Credentials” section and record the Client ID and Secret. You will pass these to
the DAPT Box class to allow the Box SDK to work.

5. Lastely, scroll down to the “OAuth 2.0 Credentials” section and change the url to http://127.0.0.
1:5000/return. Then click “Save Changes”.

1.5 Examples

Examples of DAPT are kept in the examples folder. There are basic examples of the main features of DAPT including
using a delimited file, Google Sheets and Box. There is also an example of how DAPT can be used with PhysiCell. It
is recommended that you start with the csv_example.py script as it is the simplest to use and only requires DAPT to
be installed. The other scripts require API keys to be generated.

1.5. Examples 31

https://developer.box.com/
https://github.com/BenSDuggan/DAPT/tree/master/examples
https://github.com/MathCancer/PhysiCell
https://github.com/BenSDuggan/DAPT/blob/master/examples/csv_example.py

DAPT Documentation, Release 0.9.2

1.6 Development Guide

Extra cool badges:

1.6.1 Contribute

If you would like to contribute please fork the repo and make a pull request explaining what you added/fixed and why
you added it. When you write a new feature please write tests in the test directory and documentation in the docs
folder.

Documentation

Documentation is performed using Sphinx. The docs folder holds all of the resources to document the code. If you’re
not familiar with Sphinx you can read this Medium tutorial for an introduction. Google docstrings are used for inline
commenting inside each file.

To install the required packages, run the following commands:

pip install sphinx sphinx_rtd_theme

You can compile the docs by running make build-html, assuming you have sphinx installed. This will remove
the old documentation and create the new html documentation in docs/_build/html.

Tests

Tests are located in the tests folder and written using pytest. You can run the tests locally by running python3 -m
pytest in the root DAPT directory. This assumes that you have a configuration file named test_config.json
in the root directory. The convention used is to name all files and functions in the test directory test_x, where x is
the name/description of the test.

To run tests on the tests for TravisCI, the API keys need to be stored in environment variables so they can be kept
private. These values must be escpaed in the same way Bash shells must have escaped values. A simple way to do this
is python is by using the json.dump(SECRET_KEY) method which will automatically escape the values for you.

1.6.2 Updates

Guide for pushing updates

0. Install requirements by running pip install twine

1. Test the code locally be running pip install . in the root directory.

2. Update the version in setup.py file.

3. Run python3 setup.py sdist bdist_wheel.

4. Run twine upload dist/*.

New way (test):

1. python3 -m pip install --upgrade build

32 Chapter 1. Overview

https://pypi.python.org/pypi/dapt
https://pypi.python.org/pypi/dapt
http://www.sphinx-doc.org/en/master/
https://medium.com/@eikonomega/getting-started-with-sphinx-autodoc-part-1-2cebbbca5365
https://github.com/BenSDuggan/DAPT/tests
https://docs.pytest.org/en/latest/
/setup.py

DAPT Documentation, Release 0.9.2

2. python3 -m build

3. python3 -m pip install --upgrade twine

4. python3 -m twine upload --repository testpypi dist/* uploads to test

5. python3 -m pip install --index-url https://test.pypi.org/simple/ --no-deps
example-pkg-YOUR-USERNAME-HERE to install from test

New way (production):

1. python3 -m pip install --upgrade build

2. python3 -m build

3. python3 -m pip install --upgrade twine

4. twine upload dist/* uploads to production

5. python3 -m pip install dapt to install from production

1.6. Development Guide 33

DAPT Documentation, Release 0.9.2

34 Chapter 1. Overview

Python Module Index

d
dapt.config, 4
dapt.db, 8
dapt.db.base, 10
dapt.db.delimited_file, 11
dapt.db.sheets, 13
dapt.param, 15
dapt.storage, 18
dapt.storage.base, 18
dapt.storage.box, 21
dapt.storage.google_drive, 23
dapt.tools, 25

35

DAPT Documentation, Release 0.9.2

36 Python Module Index

Index

B
Box (class in dapt.storage.box), 21

C
check_overwrite_file() (in module

dapt.storage.base), 20
check_overwrite_folder() (in module

dapt.storage.base), 20
Config (class in dapt.config), 7
connect() (dapt.db.base.Database method), 10
connect() (dapt.db.delimited_file.Delimited_file

method), 12
connect() (dapt.db.sheets.Sheet method), 14
connect() (dapt.storage.base.Storage method), 19
connect() (dapt.storage.box.Box method), 22
connect() (dapt.storage.google_drive.Google_Drive

method), 24
connected() (dapt.db.base.Database method), 10
connected() (dapt.db.delimited_file.Delimited_file

method), 12
connected() (dapt.db.sheets.Sheet method), 14
connected() (dapt.storage.base.Storage method), 19
create() (dapt.config.Config static method), 7
create_folder() (dapt.storage.google_drive.Google_Drive

method), 24
create_settings_file() (in module dapt.tools),

26
create_XML() (in module dapt.tools), 26
create_zip() (in module dapt.tools), 26

D
dapt.config (module), 4
dapt.db (module), 8
dapt.db.base (module), 10
dapt.db.delimited_file (module), 11
dapt.db.sheets (module), 13
dapt.param (module), 15
dapt.storage (module), 18
dapt.storage.base (module), 18

dapt.storage.box (module), 21
dapt.storage.google_drive (module), 23
dapt.tools (module), 25
data_cleanup() (in module dapt.tools), 26
Database (class in dapt.db.base), 10
delete_file() (dapt.storage.base.Storage method),

19
delete_file() (dapt.storage.box.Box method), 22
delete_file() (dapt.storage.google_drive.Google_Drive

method), 24
delete_folder() (dapt.storage.base.Storage

method), 19
delete_folder() (dapt.storage.box.Box method), 22
delete_folder() (dapt.storage.google_drive.Google_Drive

method), 24
Delimited_file (class in dapt.db.delimited_file), 12
download_file() (dapt.storage.base.Storage

method), 19
download_file() (dapt.storage.box.Box method), 22
download_file() (dapt.storage.google_drive.Google_Drive

method), 24
download_folder() (dapt.storage.base.Storage

method), 19
download_folder() (dapt.storage.box.Box method),

22
download_folder()

(dapt.storage.google_drive.Google_Drive
method), 24

F
failed() (dapt.param.Param method), 17
fields() (dapt.db.base.Database method), 10
fields() (dapt.db.delimited_file.Delimited_file

method), 12
fields() (dapt.db.sheets.Sheet method), 14

G
get_key_index() (dapt.db.sheets.Sheet method), 14
get_keys() (dapt.db.base.Database method), 10

37

DAPT Documentation, Release 0.9.2

get_mime_type() (in module dapt.storage.base), 21
get_row_index() (dapt.db.delimited_file.Delimited_file

method), 12
get_row_index() (dapt.db.sheets.Sheet method), 15
get_table() (dapt.db.base.Database method), 11
get_table() (dapt.db.delimited_file.Delimited_file

method), 13
get_table() (dapt.db.sheets.Sheet method), 15
get_value() (dapt.config.Config method), 7
Google_Drive (class in dapt.storage.google_drive),

24

H
has_value() (dapt.config.Config method), 7

K
keys() (dapt.config.Config method), 8

N
next_parameters() (dapt.param.Param method),

18

P
Param (class in dapt.param), 17

R
read() (dapt.config.Config method), 8
rename_file() (dapt.storage.base.Storage method),

19
rename_file() (dapt.storage.box.Box method), 22
rename_file() (dapt.storage.google_drive.Google_Drive

method), 25
rename_folder() (dapt.storage.base.Storage

method), 20
rename_folder() (dapt.storage.box.Box method), 23
rename_folder() (dapt.storage.google_drive.Google_Drive

method), 25

S
safe() (dapt.config.Config static method), 8
sample_db() (in module dapt.tools), 26
Sheet (class in dapt.db.sheets), 14
Storage (class in dapt.storage.base), 19
successful() (dapt.param.Param method), 18

U
update() (dapt.config.Config method), 8
update_cell() (dapt.db.base.Database method), 11
update_cell() (dapt.db.delimited_file.Delimited_file

method), 13
update_cell() (dapt.db.sheets.Sheet method), 15
update_row() (dapt.db.base.Database method), 11

update_row() (dapt.db.delimited_file.Delimited_file
method), 13

update_row() (dapt.db.sheets.Sheet method), 15
update_status() (dapt.param.Param method), 18
update_tokens() (dapt.storage.box.Box method), 23
upload_file() (dapt.storage.base.Storage method),

20
upload_file() (dapt.storage.box.Box method), 23
upload_file() (dapt.storage.google_drive.Google_Drive

method), 25
upload_folder() (dapt.storage.base.Storage

method), 20
upload_folder() (dapt.storage.box.Box method), 23
upload_folder() (dapt.storage.google_drive.Google_Drive

method), 25

W
worksheet() (dapt.db.sheets.Sheet method), 15

38 Index

	Overview
	Install
	Usage
	DAPT API Documentation
	Supported Online Services
	Examples
	Development Guide

	Python Module Index
	Index

